(0) Obligation:
JBC Problem based on JBC Program:
Manifest-Version: 1.0
Created-By: 1.6.0_20 (Sun Microsystems Inc.)
Main-Class: DoublyLinkedList/MainGet
package DoublyLinkedList;
/**
* A linked list with pointers to the previous and next elements
* @author cotto
*/
public class DoublyLinkedList {
public int value;
public DoublyLinkedList prev;
public DoublyLinkedList next;
public DoublyLinkedList(final int v) {
this.value = v;
}
public DoublyLinkedList getFirst() {
if (this.prev == null) {
return this;
}
return this.prev.getFirst();
}
public void move(final int relativePosition) {
if (relativePosition == 0) {
return;
}
if (relativePosition > 0 && this.next != null) {
final DoublyLinkedList temp = this.next;
if (this.prev != null) {
this.prev.next = temp;
}
temp.prev = this.prev;
this.next = temp.next;
temp.next = this;
this.prev = temp;
move(relativePosition - 1);
}
if (relativePosition < 0 && this.prev != null) {
final DoublyLinkedList temp = this.prev;
if (this.next != null) {
this.next.prev = temp;
}
temp.next = this.next;
this.prev = temp.prev;
temp.prev = this;
this.next = temp;
move(relativePosition - 1);
}
}
public DoublyLinkedList get(final int index) {
return this.getFirst().getR(index);
}
private DoublyLinkedList getR(final int index) {
if (index == 0 || this.next == null) {
return this;
}
return this.next.getR(index - 1);
}
public DoublyLinkedList find(final int v) {
final DoublyLinkedList first = this.getFirst();
return first.findR(v);
}
private DoublyLinkedList findR(final int v) {
if (this.value == v) {
return this;
}
if (this.next != null) {
return this.next.findR(v);
}
return null;
}
public void delete(final int v) {
final DoublyLinkedList elem = find(v);
if (elem != null) {
if (elem.prev != null) {
elem.prev.next = elem.next;
}
if (elem.next != null) {
elem.next.prev = elem.prev;
}
}
}
public DoublyLinkedList copy() {
final DoublyLinkedList first = this.getFirst();
return first.copyR(null);
}
private DoublyLinkedList copyR(final DoublyLinkedList p) {
final DoublyLinkedList copy = new DoublyLinkedList(this.value);
copy.prev = p;
if (p != null) {
p.next = copy;
}
if (this.next != null) {
this.next.copyR(copy);
}
return copy;
}
static DoublyLinkedList createList() {
final int count = Random.random();
DoublyLinkedList cur = null;
for (int i = 0; i < count; i++) {
final DoublyLinkedList old = cur;
cur = new DoublyLinkedList(Random.random());
cur.prev = old;
if (old != null) {
old.next = cur;
}
}
return cur;
}
}
package DoublyLinkedList;
/**
*
* @author cotto
*/
public class MainGet {
public static void main(final String[] args) {
Random.args = args;
final DoublyLinkedList list = DoublyLinkedList.createList();
list.get(Random.random());
}
}
package DoublyLinkedList;
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (args.length <= index) {
return 0;
}
final String string = args[index];
index++;
if (string == null) {
return 0;
}
return string.length();
}
}
(1) JBC2FIG (SOUND transformation)
Constructed FIGraph.
(2) Obligation:
FIGraph based on JBC Program:
DoublyLinkedList.MainGet.main([Ljava/lang/String;)V: Graph of 250 nodes with 0 SCCs.
DoublyLinkedList.DoublyLinkedList.createList()LDoublyLinkedList/DoublyLinkedList;: Graph of 205 nodes with 1 SCC.
DoublyLinkedList.DoublyLinkedList.getFirst()LDoublyLinkedList/DoublyLinkedList;: Graph of 29 nodes with 0 SCCs.
DoublyLinkedList.DoublyLinkedList.getR(I)LDoublyLinkedList/DoublyLinkedList;: Graph of 127 nodes with 0 SCCs.
(3) FIGtoITRSProof (SOUND transformation)
Transformed FIGraph SCCs to IDPs. Logs:
Log for SCC 0: Generated 62 rules for P and 90 rules for R.
Combined rules. Obtained 3 rules for P and 31 rules for R.
Filtered ground terms:
6218_0_getR_EQ(x1, x2, x3, x4) → 6218_0_getR_EQ(x2, x3, x4)
Cond_6218_0_getR_EQ2(x1, x2, x3, x4, x5) → Cond_6218_0_getR_EQ2(x1, x3, x4, x5)
DoublyLinkedList.DoublyLinkedList(x1, x2) → DoublyLinkedList.DoublyLinkedList(x2)
Cond_6218_0_getR_EQ1(x1, x2, x3, x4, x5) → Cond_6218_0_getR_EQ1(x1, x3, x4, x5)
Cond_6218_0_getR_EQ(x1, x2, x3, x4, x5) → Cond_6218_0_getR_EQ(x1, x3, x4, x5)
9096_0_getR_Return(x1) → 9096_0_getR_Return
9251_0_getR_Return(x1) → 9251_0_getR_Return
9162_0_getR_Return(x1) → 9162_0_getR_Return
8302_0_getR_Return(x1, x2) → 8302_0_getR_Return(x2)
8280_0_getR_Return(x1, x2) → 8280_0_getR_Return(x2)
8265_0_getR_Return(x1, x2) → 8265_0_getR_Return(x2)
7348_0_getR_Return(x1, x2, x3, x4) → 7348_0_getR_Return(x3)
7273_0_getR_Return(x1, x2, x3, x4) → 7273_0_getR_Return(x3)
7202_0_getR_Return(x1, x2, x3, x4) → 7202_0_getR_Return(x3)
6286_0_getR_Return(x1, x2, x3, x4) → 6286_0_getR_Return(x2, x4)
Filtered duplicate args:
6218_0_getR_EQ(x1, x2, x3) → 6218_0_getR_EQ(x1, x3)
Cond_6218_0_getR_EQ2(x1, x2, x3, x4) → Cond_6218_0_getR_EQ2(x1, x2, x4)
Cond_6218_0_getR_EQ1(x1, x2, x3, x4) → Cond_6218_0_getR_EQ1(x1, x2, x4)
Cond_6218_0_getR_EQ(x1, x2, x3, x4) → Cond_6218_0_getR_EQ(x1, x2, x4)
6286_0_getR_Return(x1, x2) → 6286_0_getR_Return(x2)
Combined rules. Obtained 3 rules for P and 31 rules for R.
Finished conversion. Obtained 3 rules for P and 31 rules for R. System has predefined symbols.
Log for SCC 1: Generated 16 rules for P and 14 rules for R.
Combined rules. Obtained 3 rules for P and 3 rules for R.
Filtered ground terms:
3788_0_getFirst_FieldAccess(x1, x2, x3) → 3788_0_getFirst_FieldAccess(x2, x3)
DoublyLinkedList.DoublyLinkedList(x1, x2) → DoublyLinkedList.DoublyLinkedList(x2)
4849_0_getFirst_NONNULL(x1, x2, x3) → 4849_0_getFirst_NONNULL(x2, x3)
5394_0_getFirst_Return(x1) → 5394_0_getFirst_Return
5050_0_getFirst_Return(x1, x2) → 5050_0_getFirst_Return
5001_0_getFirst_Return(x1, x2, x3) → 5001_0_getFirst_Return
Filtered duplicate args:
3788_0_getFirst_FieldAccess(x1, x2) → 3788_0_getFirst_FieldAccess(x2)
Finished conversion. Obtained 3 rules for P and 3 rules for R. System has no predefined symbols.
Log for SCC 2: Generated 105 rules for P and 60 rules for R.
Combined rules. Obtained 14 rules for P and 0 rules for R.
Filtered ground terms:
9874_0_createList_NULL(x1, x2, x3, x4, x5, x6) → 9874_0_createList_NULL(x2, x4, x5, x6)
DoublyLinkedList.DoublyLinkedList(x1) → DoublyLinkedList.DoublyLinkedList
Cond_9255_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_9255_1_createList_InvokeMethod(x1, x2, x3, x4, x5)
9255_0_random_GT(x1, x2, x3) → 9255_0_random_GT(x2, x3)
9255_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 9255_1_createList_InvokeMethod(x1, x2, x3, x4)
6830_0_createList_Load(x1, x2, x3, x4, x5) → 6830_0_createList_Load(x2, x3, x4, x5)
10029_0_createList_Inc(x1, x2, x3, x4) → 10029_0_createList_Inc(x2, x4)
Cond_9803_1_createList_InvokeMethod3(x1, x2, x3, x4, x5, x6, x7) → Cond_9803_1_createList_InvokeMethod3(x1, x2, x3, x4, x5)
9803_0_random_IntArithmetic(x1, x2, x3, x4) → 9803_0_random_IntArithmetic(x2, x3)
9803_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 9803_1_createList_InvokeMethod(x1, x2, x3, x4)
Cond_9803_1_createList_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_9803_1_createList_InvokeMethod2(x1, x2, x3, x4)
Cond_9803_1_createList_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_9803_1_createList_InvokeMethod1(x1, x2, x3, x4)
10240_0_createList_Inc(x1, x2, x3, x4) → 10240_0_createList_Inc(x2, x4)
Cond_9803_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_9803_1_createList_InvokeMethod(x1, x2, x3, x4)
Cond_9767_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_9767_1_createList_InvokeMethod(x1, x2, x3, x4, x5)
9767_0_random_ArrayAccess(x1, x2, x3) → 9767_0_random_ArrayAccess(x2, x3)
9767_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 9767_1_createList_InvokeMethod(x1, x2, x3, x4)
Cond_9253_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_9253_1_createList_InvokeMethod(x1, x2, x3, x4, x5)
9253_0_random_GT(x1, x2, x3) → 9253_0_random_GT(x2, x3)
9253_1_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 9253_1_createList_InvokeMethod(x1, x2, x3, x4)
Cond_6830_0_createList_Load1(x1, x2, x3, x4, x5, x6) → Cond_6830_0_createList_Load1(x1, x3, x4, x5, x6)
Cond_6830_0_createList_Load(x1, x2, x3, x4, x5, x6) → Cond_6830_0_createList_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
9874_0_createList_NULL(x1, x2, x3, x4) → 9874_0_createList_NULL(x1, x2, x4)
6830_0_createList_Load(x1, x2, x3, x4) → 6830_0_createList_Load(x1, x2, x4)
Cond_6830_0_createList_Load1(x1, x2, x3, x4, x5) → Cond_6830_0_createList_Load1(x1, x2, x3, x5)
Cond_6830_0_createList_Load(x1, x2, x3, x4, x5) → Cond_6830_0_createList_Load(x1, x2, x3, x5)
Filtered all non-integer terms:
9803_1_createList_InvokeMethod(x1, x2, x3, x4) → 9803_1_createList_InvokeMethod(x1, x2, x3)
9803_0_random_IntArithmetic(x1, x2) → 9803_0_random_IntArithmetic(x2)
6830_0_createList_Load(x1, x2, x3) → 6830_0_createList_Load(x1, x3)
9874_0_createList_NULL(x1, x2, x3) → 9874_0_createList_NULL(x1, x2)
Filtered all free variables:
9253_1_createList_InvokeMethod(x1, x2, x3, x4) → 9253_1_createList_InvokeMethod(x2, x3, x4)
9255_1_createList_InvokeMethod(x1, x2, x3, x4) → 9255_1_createList_InvokeMethod(x2, x3, x4)
Cond_9253_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → Cond_9253_1_createList_InvokeMethod(x1, x3, x4, x5)
9767_1_createList_InvokeMethod(x1, x2, x3, x4) → 9767_1_createList_InvokeMethod(x2, x3, x4)
Cond_9767_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → Cond_9767_1_createList_InvokeMethod(x1, x3, x4, x5)
9803_1_createList_InvokeMethod(x1, x2, x3) → 9803_1_createList_InvokeMethod(x2, x3)
Cond_9803_1_createList_InvokeMethod(x1, x2, x3, x4) → Cond_9803_1_createList_InvokeMethod(x1, x3, x4)
Cond_9803_1_createList_InvokeMethod1(x1, x2, x3, x4) → Cond_9803_1_createList_InvokeMethod1(x1, x3, x4)
Cond_9803_1_createList_InvokeMethod2(x1, x2, x3, x4) → Cond_9803_1_createList_InvokeMethod2(x1, x3, x4)
Cond_9803_1_createList_InvokeMethod3(x1, x2, x3, x4, x5) → Cond_9803_1_createList_InvokeMethod3(x1, x3, x4, x5)
Cond_9255_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → Cond_9255_1_createList_InvokeMethod(x1, x3, x4, x5)
Combined rules. Obtained 5 rules for P and 0 rules for R.
Finished conversion. Obtained 5 rules for P and 0 rules for R. System has predefined symbols.
(4) Complex Obligation (AND)
(5) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
The ITRS R consists of the following rules:
8041_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9162_0_getR_Return8169_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9251_0_getR_Return7891_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9096_0_getR_Return6218_0_getR_EQ(
java.lang.Object(
x0),
0) →
6286_0_getR_Return(
java.lang.Object(
x0))
8041_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0) →
8280_0_getR_Return(
java.lang.Object(
x0))
8041_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8280_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8041_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8280_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8041_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8280_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8041_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9162_0_getR_Return8169_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0) →
8302_0_getR_Return(
java.lang.Object(
x0))
8169_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8302_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8169_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8302_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8169_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8302_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8169_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9251_0_getR_Return7891_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0) →
8265_0_getR_Return(
java.lang.Object(
x0))
7891_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8265_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
7891_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8265_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
7891_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8265_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
7891_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9096_0_getR_ReturnThe integer pair graph contains the following rules and edges:
(0):
6218_0_GETR_EQ(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0[0]))),
x1[0]) →
COND_6218_0_GETR_EQ(
!(
x1[0] = 0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0[0]))),
x1[0])
(1):
COND_6218_0_GETR_EQ(
TRUE,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0[1]))),
x1[1]) →
6218_0_GETR_EQ(
java.lang.Object(
x0[1]),
x1[1] - 1)
(0) -> (1), if ((!(x1[0] = 0) →* TRUE)∧(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))) →* java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))))∧(x1[0] →* x1[1]))
(1) -> (0), if ((java.lang.Object(x0[1]) →* java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))))∧(x1[1] - 1 →* x1[0]))
The set Q consists of the following terms:
8041_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8169_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
7891_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
6218_0_getR_EQ(
java.lang.Object(
x0),
0)
8041_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0)
8041_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8041_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8041_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8041_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8041_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8041_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8041_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8041_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8169_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0)
8169_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8169_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8169_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8169_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8169_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8169_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8169_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8169_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
7891_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0)
7891_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
7891_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
7891_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
7891_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
7891_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
7891_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
7891_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
7891_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
(6) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
6218_0_GETR_EQ(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
COND_6218_0_GETR_EQ(
!(
=(
x1,
0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) the following chains were created:
- We consider the chain 6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]) → COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]), COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), x1[1]) → 6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1)) which results in the following constraint:
(1) (!(=(x1[0], 0))=TRUE∧java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0])))=java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1])))∧x1[0]=x1[1] ⇒ 6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])≥NonInfC∧6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])≥COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])∧(UIncreasing(COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])), ≥))
We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint:
(2) (!(=(x1[0], 0))=TRUE ⇒ 6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])≥NonInfC∧6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])≥COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])∧(UIncreasing(COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])), ≥)∧[(80)bni_45 + (-1)Bound*bni_45] + [bni_45]x1[0] + [(54)bni_45]x0[0] ≥ 0∧[(-1)bso_46] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])), ≥)∧[(80)bni_45 + (-1)Bound*bni_45] + [bni_45]x1[0] + [(54)bni_45]x0[0] ≥ 0∧[(-1)bso_46] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])), ≥)∧[(80)bni_45 + (-1)Bound*bni_45] + [bni_45]x1[0] + [(54)bni_45]x0[0] ≥ 0∧[(-1)bso_46] ≥ 0)
We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])), ≥)∧[bni_45] ≥ 0∧[(54)bni_45] ≥ 0∧[(80)bni_45 + (-1)Bound*bni_45] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_46] ≥ 0)
For Pair
COND_6218_0_GETR_EQ(
TRUE,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
6218_0_GETR_EQ(
java.lang.Object(
x0),
-(
x1,
1)) the following chains were created:
- We consider the chain 6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]) → COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]), COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), x1[1]) → 6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1)), 6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]) → COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]) which results in the following constraint:
(7) (!(=(x1[0], 0))=TRUE∧java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0])))=java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1])))∧x1[0]=x1[1]∧java.lang.Object(x0[1])=java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]1)))∧-(x1[1], 1)=x1[0]1 ⇒ COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), x1[1])≥NonInfC∧COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), x1[1])≥6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))∧(UIncreasing(6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))), ≥))
We simplified constraint (7) using rules (I), (II), (III), (IV) which results in the following new constraint:
(8) (!(=(x1[0], 0))=TRUE ⇒ COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]1))))), x1[0])≥NonInfC∧COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]1))))), x1[0])≥6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]1))), -(x1[0], 1))∧(UIncreasing(6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))), ≥))
We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(9) (0 ≥ 0 ⇒ (UIncreasing(6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))), ≥)∧[(728)bni_47 + (-1)Bound*bni_47] + [bni_47]x1[0] + [(486)bni_47]x0[0]1 ≥ 0∧[648 + (-1)bso_48] + x1[0] + [432]x0[0]1 ≥ 0)
We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(10) (0 ≥ 0 ⇒ (UIncreasing(6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))), ≥)∧[(728)bni_47 + (-1)Bound*bni_47] + [bni_47]x1[0] + [(486)bni_47]x0[0]1 ≥ 0∧[648 + (-1)bso_48] + x1[0] + [432]x0[0]1 ≥ 0)
We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(11) (0 ≥ 0 ⇒ (UIncreasing(6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))), ≥)∧[(728)bni_47 + (-1)Bound*bni_47] + [bni_47]x1[0] + [(486)bni_47]x0[0]1 ≥ 0∧[648 + (-1)bso_48] + x1[0] + [432]x0[0]1 ≥ 0)
We simplified constraint (11) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:
(12) (0 ≥ 0 ⇒ (UIncreasing(6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))), ≥)∧[bni_47] ≥ 0∧[(486)bni_47] ≥ 0∧[(728)bni_47 + (-1)Bound*bni_47] ≥ 0∧[1] ≥ 0∧[648 + (-1)bso_48] ≥ 0∧[1] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0))), x1) → COND_6218_0_GETR_EQ(!(=(x1, 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0))), x1)
- (0 ≥ 0 ⇒ (UIncreasing(COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])), ≥)∧[bni_45] ≥ 0∧[(54)bni_45] ≥ 0∧[(80)bni_45 + (-1)Bound*bni_45] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_46] ≥ 0)
- COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0))), x1) → 6218_0_GETR_EQ(java.lang.Object(x0), -(x1, 1))
- (0 ≥ 0 ⇒ (UIncreasing(6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))), ≥)∧[bni_47] ≥ 0∧[(486)bni_47] ≥ 0∧[(728)bni_47 + (-1)Bound*bni_47] ≥ 0∧[1] ≥ 0∧[648 + (-1)bso_48] ≥ 0∧[1] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers with natural coefficients for non-tuple symbols [NONINF][POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(8041_1_getR_InvokeMethod(x1, x2, x3)) = 0
POL(8265_0_getR_Return(x1)) = 0
POL(java.lang.Object(x1)) = [3] + [3]x1
POL(DoublyLinkedList.DoublyLinkedList(x1)) = [3] + [3]x1
POL(9162_0_getR_Return) = 0
POL(8169_1_getR_InvokeMethod(x1, x2, x3)) = 0
POL(9251_0_getR_Return) = 0
POL(7891_1_getR_InvokeMethod(x1, x2, x3)) = 0
POL(9096_0_getR_Return) = 0
POL(6218_0_getR_EQ(x1, x2)) = 0
POL(0) = 0
POL(6286_0_getR_Return(x1)) = 0
POL(8280_0_getR_Return(x1)) = 0
POL(7202_0_getR_Return(x1)) = 0
POL(NULL) = 0
POL(7273_0_getR_Return(x1)) = 0
POL(7348_0_getR_Return(x1)) = 0
POL(8302_0_getR_Return(x1)) = 0
POL(6218_0_GETR_EQ(x1, x2)) = [2] + x2 + [2]x1
POL(COND_6218_0_GETR_EQ(x1, x2, x3)) = [2] + x3 + [2]x2
POL(!(x1)) = 0
POL(=(x1, x2)) = 0
POL(-(x1, x2)) = 0
POL(1) = 0
The following pairs are in P
>:
COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), x1[1]) → 6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))
The following pairs are in P
bound:
6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]) → COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])
COND_6218_0_GETR_EQ(TRUE, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), x1[1]) → 6218_0_GETR_EQ(java.lang.Object(x0[1]), -(x1[1], 1))
The following pairs are in P
≥:
6218_0_GETR_EQ(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0]) → COND_6218_0_GETR_EQ(!(=(x1[0], 0)), java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[0]))), x1[0])
At least the following rules have been oriented under context sensitive arithmetic replacement:
!(TRUE)1 → FALSE1
!(FALSE)1 → TRUE1
(7) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
The ITRS R consists of the following rules:
8041_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9162_0_getR_Return8169_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9251_0_getR_Return7891_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9096_0_getR_Return6218_0_getR_EQ(
java.lang.Object(
x0),
0) →
6286_0_getR_Return(
java.lang.Object(
x0))
8041_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0) →
8280_0_getR_Return(
java.lang.Object(
x0))
8041_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8280_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8041_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8280_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8041_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8280_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8041_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9162_0_getR_Return8041_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9162_0_getR_Return8169_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0) →
8302_0_getR_Return(
java.lang.Object(
x0))
8169_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8302_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8169_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8302_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8169_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8302_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
8169_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9251_0_getR_Return8169_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9251_0_getR_Return7891_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0) →
8265_0_getR_Return(
java.lang.Object(
x0))
7891_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8265_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
7891_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8265_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
7891_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0) →
8265_0_getR_Return(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
7891_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9096_0_getR_Return7891_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1) →
9096_0_getR_ReturnThe integer pair graph contains the following rules and edges:
(0):
6218_0_GETR_EQ(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0[0]))),
x1[0]) →
COND_6218_0_GETR_EQ(
!(
x1[0] = 0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0[0]))),
x1[0])
The set Q consists of the following terms:
8041_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8169_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
7891_1_getR_InvokeMethod(
8265_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
6218_0_getR_EQ(
java.lang.Object(
x0),
0)
8041_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0)
8041_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8041_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8041_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8041_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8041_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8041_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8041_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8041_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8169_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0)
8169_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8169_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8169_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
8169_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8169_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
8169_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8169_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
8169_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
7891_1_getR_InvokeMethod(
6286_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
x0),
0)
7891_1_getR_InvokeMethod(
7202_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
7891_1_getR_InvokeMethod(
7273_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
7891_1_getR_InvokeMethod(
7348_0_getR_Return(
x0),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)),
x0)
7891_1_getR_InvokeMethod(
8280_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
7891_1_getR_InvokeMethod(
8302_0_getR_Return(
java.lang.Object(
x0)),
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))),
x1)
7891_1_getR_InvokeMethod(
9096_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
7891_1_getR_InvokeMethod(
9162_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
7891_1_getR_InvokeMethod(
9251_0_getR_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0))))),
x1)
(8) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(9) TRUE
(10) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
none
The ITRS R consists of the following rules:
5030_1_getFirst_InvokeMethod(
5001_0_getFirst_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL))) →
5050_0_getFirst_Return5030_1_getFirst_InvokeMethod(
5050_0_getFirst_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL))))) →
5394_0_getFirst_Return5030_1_getFirst_InvokeMethod(
5394_0_getFirst_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
x0))))))) →
5394_0_getFirst_ReturnThe integer pair graph contains the following rules and edges:
(0):
3788_0_GETFIRST_FIELDACCESS(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
x0[0]))) →
4849_0_GETFIRST_NONNULL(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
x0[0])),
x0[0])
(1):
4849_0_GETFIRST_NONNULL(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0[1]))),
java.lang.Object(
x0[1])) →
3788_0_GETFIRST_FIELDACCESS(
java.lang.Object(
x0[1]))
(2):
3788_0_GETFIRST_FIELDACCESS(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
x0[2])))) →
3788_0_GETFIRST_FIELDACCESS(
java.lang.Object(
x0[2]))
(0) -> (1), if ((java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0])) →* java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))))∧(x0[0] →* java.lang.Object(x0[1])))
(1) -> (0), if ((java.lang.Object(x0[1]) →* java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0]))))
(1) -> (2), if ((java.lang.Object(x0[1]) →* java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[2])))))
(2) -> (0), if ((java.lang.Object(x0[2]) →* java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0]))))
(2) -> (2), if ((java.lang.Object(x0[2]) →* java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[2]')))))
The set Q consists of the following terms:
5030_1_getFirst_InvokeMethod(
5001_0_getFirst_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))
5030_1_getFirst_InvokeMethod(
5050_0_getFirst_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
NULL)))))
5030_1_getFirst_InvokeMethod(
5394_0_getFirst_Return,
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
java.lang.Object(
DoublyLinkedList.DoublyLinkedList(
x0)))))))
(11) IDPtoQDPProof (SOUND transformation)
Represented integers and predefined function symbols by Terms
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0]))) → 4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0])), x0[0])
4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), java.lang.Object(x0[1])) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[1]))
3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[2])))) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[2]))
The TRS R consists of the following rules:
5030_1_getFirst_InvokeMethod(5001_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL))) → 5050_0_getFirst_Return
5030_1_getFirst_InvokeMethod(5050_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL))))) → 5394_0_getFirst_Return
5030_1_getFirst_InvokeMethod(5394_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0))))))) → 5394_0_getFirst_Return
The set Q consists of the following terms:
5030_1_getFirst_InvokeMethod(5001_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL)))
5030_1_getFirst_InvokeMethod(5050_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL)))))
5030_1_getFirst_InvokeMethod(5394_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0)))))))
We have to consider all minimal (P,Q,R)-chains.
(13) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0]))) → 4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0])), x0[0])
4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), java.lang.Object(x0[1])) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[1]))
3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[2])))) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[2]))
R is empty.
The set Q consists of the following terms:
5030_1_getFirst_InvokeMethod(5001_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL)))
5030_1_getFirst_InvokeMethod(5050_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL)))))
5030_1_getFirst_InvokeMethod(5394_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0)))))))
We have to consider all minimal (P,Q,R)-chains.
(15) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
5030_1_getFirst_InvokeMethod(5001_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL)))
5030_1_getFirst_InvokeMethod(5050_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(NULL)))))
5030_1_getFirst_InvokeMethod(5394_0_getFirst_Return, java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0)))))))
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0]))) → 4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0])), x0[0])
4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), java.lang.Object(x0[1])) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[1]))
3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[2])))) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[2]))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- 4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[1]))), java.lang.Object(x0[1])) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[1]))
The graph contains the following edges 1 > 1, 2 >= 1
- 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(java.lang.Object(x0[2])))) → 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(x0[2]))
The graph contains the following edges 1 > 1
- 3788_0_GETFIRST_FIELDACCESS(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0]))) → 4849_0_GETFIRST_NONNULL(java.lang.Object(DoublyLinkedList.DoublyLinkedList(x0[0])), x0[0])
The graph contains the following edges 1 >= 1, 1 > 2
(18) YES
(19) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(0):
10240_0_CREATELIST_INC(
x0[0],
x1[0]) →
6830_0_CREATELIST_LOAD(
x0[0],
x1[0] + 1)
(1):
6830_0_CREATELIST_LOAD(
x0[1],
x1[1]) →
COND_6830_0_CREATELIST_LOAD(
x1[1] < x0[1],
x0[1],
x1[1])
(2):
COND_6830_0_CREATELIST_LOAD(
TRUE,
x0[2],
x1[2]) →
10240_0_CREATELIST_INC(
x0[2],
x1[2])
(3):
6830_0_CREATELIST_LOAD(
x0[3],
x1[3]) →
COND_6830_0_CREATELIST_LOAD1(
x1[3] < x0[3],
x0[3],
x1[3])
(4):
COND_6830_0_CREATELIST_LOAD1(
TRUE,
x0[4],
x1[4]) →
6830_0_CREATELIST_LOAD(
x0[4],
x1[4] + 1)
(0) -> (1), if ((x0[0] →* x0[1])∧(x1[0] + 1 →* x1[1]))
(0) -> (3), if ((x0[0] →* x0[3])∧(x1[0] + 1 →* x1[3]))
(1) -> (2), if ((x1[1] < x0[1] →* TRUE)∧(x0[1] →* x0[2])∧(x1[1] →* x1[2]))
(2) -> (0), if ((x0[2] →* x0[0])∧(x1[2] →* x1[0]))
(3) -> (4), if ((x1[3] < x0[3] →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
(4) -> (1), if ((x0[4] →* x0[1])∧(x1[4] + 1 →* x1[1]))
(4) -> (3), if ((x0[4] →* x0[3])∧(x1[4] + 1 →* x1[3]))
The set Q is empty.
(20) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
10240_0_CREATELIST_INC(
x0,
x1) →
6830_0_CREATELIST_LOAD(
x0,
+(
x1,
1)) the following chains were created:
- We consider the chain 10240_0_CREATELIST_INC(x0[0], x1[0]) → 6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1)) which results in the following constraint:
(1) (10240_0_CREATELIST_INC(x0[0], x1[0])≥NonInfC∧10240_0_CREATELIST_INC(x0[0], x1[0])≥6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))∧(UIncreasing(6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))), ≥)∧[1 + (-1)bso_12] ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))), ≥)∧[1 + (-1)bso_12] ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))), ≥)∧[1 + (-1)bso_12] ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
For Pair
6830_0_CREATELIST_LOAD(
x0,
x1) →
COND_6830_0_CREATELIST_LOAD(
<(
x1,
x0),
x0,
x1) the following chains were created:
- We consider the chain 6830_0_CREATELIST_LOAD(x0[1], x1[1]) → COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1]), COND_6830_0_CREATELIST_LOAD(TRUE, x0[2], x1[2]) → 10240_0_CREATELIST_INC(x0[2], x1[2]) which results in the following constraint:
(6) (<(x1[1], x0[1])=TRUE∧x0[1]=x0[2]∧x1[1]=x1[2] ⇒ 6830_0_CREATELIST_LOAD(x0[1], x1[1])≥NonInfC∧6830_0_CREATELIST_LOAD(x0[1], x1[1])≥COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])∧(UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥))
We simplified constraint (6) using rule (IV) which results in the following new constraint:
(7) (<(x1[1], x0[1])=TRUE ⇒ 6830_0_CREATELIST_LOAD(x0[1], x1[1])≥NonInfC∧6830_0_CREATELIST_LOAD(x0[1], x1[1])≥COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])∧(UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) (x0[1] + [-1] + [-1]x1[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[1] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) (x0[1] + [-1] + [-1]x1[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[1] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) (x0[1] + [-1] + [-1]x1[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[1] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(11) (x0[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(12) (x0[1] ≥ 0∧x1[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x0[1] ≥ 0∧x1[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
For Pair
COND_6830_0_CREATELIST_LOAD(
TRUE,
x0,
x1) →
10240_0_CREATELIST_INC(
x0,
x1) the following chains were created:
- We consider the chain COND_6830_0_CREATELIST_LOAD(TRUE, x0[2], x1[2]) → 10240_0_CREATELIST_INC(x0[2], x1[2]), 10240_0_CREATELIST_INC(x0[0], x1[0]) → 6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1)) which results in the following constraint:
(14) (x0[2]=x0[0]∧x1[2]=x1[0] ⇒ COND_6830_0_CREATELIST_LOAD(TRUE, x0[2], x1[2])≥NonInfC∧COND_6830_0_CREATELIST_LOAD(TRUE, x0[2], x1[2])≥10240_0_CREATELIST_INC(x0[2], x1[2])∧(UIncreasing(10240_0_CREATELIST_INC(x0[2], x1[2])), ≥))
We simplified constraint (14) using rule (IV) which results in the following new constraint:
(15) (COND_6830_0_CREATELIST_LOAD(TRUE, x0[2], x1[2])≥NonInfC∧COND_6830_0_CREATELIST_LOAD(TRUE, x0[2], x1[2])≥10240_0_CREATELIST_INC(x0[2], x1[2])∧(UIncreasing(10240_0_CREATELIST_INC(x0[2], x1[2])), ≥))
We simplified constraint (15) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(16) ((UIncreasing(10240_0_CREATELIST_INC(x0[2], x1[2])), ≥)∧[(-1)bso_16] ≥ 0)
We simplified constraint (16) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(17) ((UIncreasing(10240_0_CREATELIST_INC(x0[2], x1[2])), ≥)∧[(-1)bso_16] ≥ 0)
We simplified constraint (17) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(18) ((UIncreasing(10240_0_CREATELIST_INC(x0[2], x1[2])), ≥)∧[(-1)bso_16] ≥ 0)
We simplified constraint (18) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(19) ((UIncreasing(10240_0_CREATELIST_INC(x0[2], x1[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
For Pair
6830_0_CREATELIST_LOAD(
x0,
x1) →
COND_6830_0_CREATELIST_LOAD1(
<(
x1,
x0),
x0,
x1) the following chains were created:
- We consider the chain 6830_0_CREATELIST_LOAD(x0[3], x1[3]) → COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3]), COND_6830_0_CREATELIST_LOAD1(TRUE, x0[4], x1[4]) → 6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1)) which results in the following constraint:
(20) (<(x1[3], x0[3])=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 6830_0_CREATELIST_LOAD(x0[3], x1[3])≥NonInfC∧6830_0_CREATELIST_LOAD(x0[3], x1[3])≥COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])∧(UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥))
We simplified constraint (20) using rule (IV) which results in the following new constraint:
(21) (<(x1[3], x0[3])=TRUE ⇒ 6830_0_CREATELIST_LOAD(x0[3], x1[3])≥NonInfC∧6830_0_CREATELIST_LOAD(x0[3], x1[3])≥COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])∧(UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥))
We simplified constraint (21) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(22) (x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x1[3] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
We simplified constraint (22) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(23) (x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x1[3] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
We simplified constraint (23) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(24) (x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x1[3] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(25) (x0[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraints:
(26) (x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
(27) (x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
For Pair
COND_6830_0_CREATELIST_LOAD1(
TRUE,
x0,
x1) →
6830_0_CREATELIST_LOAD(
x0,
+(
x1,
1)) the following chains were created:
- We consider the chain COND_6830_0_CREATELIST_LOAD1(TRUE, x0[4], x1[4]) → 6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1)) which results in the following constraint:
(28) (COND_6830_0_CREATELIST_LOAD1(TRUE, x0[4], x1[4])≥NonInfC∧COND_6830_0_CREATELIST_LOAD1(TRUE, x0[4], x1[4])≥6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))∧(UIncreasing(6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))), ≥))
We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(29) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))), ≥)∧[1 + (-1)bso_20] ≥ 0)
We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(30) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))), ≥)∧[1 + (-1)bso_20] ≥ 0)
We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(31) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))), ≥)∧[1 + (-1)bso_20] ≥ 0)
We simplified constraint (31) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(32) ((UIncreasing(6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 10240_0_CREATELIST_INC(x0, x1) → 6830_0_CREATELIST_LOAD(x0, +(x1, 1))
- ((UIncreasing(6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
- 6830_0_CREATELIST_LOAD(x0, x1) → COND_6830_0_CREATELIST_LOAD(<(x1, x0), x0, x1)
- (x0[1] ≥ 0∧x1[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
- (x0[1] ≥ 0∧x1[1] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[1] ≥ 0∧[(-1)bso_14] ≥ 0)
- COND_6830_0_CREATELIST_LOAD(TRUE, x0, x1) → 10240_0_CREATELIST_INC(x0, x1)
- ((UIncreasing(10240_0_CREATELIST_INC(x0[2], x1[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
- 6830_0_CREATELIST_LOAD(x0, x1) → COND_6830_0_CREATELIST_LOAD1(<(x1, x0), x0, x1)
- (x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
- (x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[3] ≥ 0∧[(-1)bso_18] ≥ 0)
- COND_6830_0_CREATELIST_LOAD1(TRUE, x0, x1) → 6830_0_CREATELIST_LOAD(x0, +(x1, 1))
- ((UIncreasing(6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(10240_0_CREATELIST_INC(x1, x2)) = [-1] + x1 + [-1]x2
POL(6830_0_CREATELIST_LOAD(x1, x2)) = [-1] + [-1]x2 + x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_6830_0_CREATELIST_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(<(x1, x2)) = [-1]
POL(COND_6830_0_CREATELIST_LOAD1(x1, x2, x3)) = [-1] + [-1]x3 + x2
The following pairs are in P
>:
10240_0_CREATELIST_INC(x0[0], x1[0]) → 6830_0_CREATELIST_LOAD(x0[0], +(x1[0], 1))
COND_6830_0_CREATELIST_LOAD1(TRUE, x0[4], x1[4]) → 6830_0_CREATELIST_LOAD(x0[4], +(x1[4], 1))
The following pairs are in P
bound:
6830_0_CREATELIST_LOAD(x0[1], x1[1]) → COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])
6830_0_CREATELIST_LOAD(x0[3], x1[3]) → COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])
The following pairs are in P
≥:
6830_0_CREATELIST_LOAD(x0[1], x1[1]) → COND_6830_0_CREATELIST_LOAD(<(x1[1], x0[1]), x0[1], x1[1])
COND_6830_0_CREATELIST_LOAD(TRUE, x0[2], x1[2]) → 10240_0_CREATELIST_INC(x0[2], x1[2])
6830_0_CREATELIST_LOAD(x0[3], x1[3]) → COND_6830_0_CREATELIST_LOAD1(<(x1[3], x0[3]), x0[3], x1[3])
There are no usable rules.
(21) Complex Obligation (AND)
(22) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(1):
6830_0_CREATELIST_LOAD(
x0[1],
x1[1]) →
COND_6830_0_CREATELIST_LOAD(
x1[1] < x0[1],
x0[1],
x1[1])
(2):
COND_6830_0_CREATELIST_LOAD(
TRUE,
x0[2],
x1[2]) →
10240_0_CREATELIST_INC(
x0[2],
x1[2])
(3):
6830_0_CREATELIST_LOAD(
x0[3],
x1[3]) →
COND_6830_0_CREATELIST_LOAD1(
x1[3] < x0[3],
x0[3],
x1[3])
(1) -> (2), if ((x1[1] < x0[1] →* TRUE)∧(x0[1] →* x0[2])∧(x1[1] →* x1[2]))
The set Q is empty.
(23) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.
(24) TRUE
(25) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(0):
10240_0_CREATELIST_INC(
x0[0],
x1[0]) →
6830_0_CREATELIST_LOAD(
x0[0],
x1[0] + 1)
(2):
COND_6830_0_CREATELIST_LOAD(
TRUE,
x0[2],
x1[2]) →
10240_0_CREATELIST_INC(
x0[2],
x1[2])
(4):
COND_6830_0_CREATELIST_LOAD1(
TRUE,
x0[4],
x1[4]) →
6830_0_CREATELIST_LOAD(
x0[4],
x1[4] + 1)
(2) -> (0), if ((x0[2] →* x0[0])∧(x1[2] →* x1[0]))
The set Q is empty.
(26) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.
(27) TRUE